References

[Aft94]M. Aftosmis. Upwind method for simulation of viscous flow on adaptively refined meshes. AIAA Journal, 32(2):268–277, 1994.
[CLM+12]M. J. Churchfield, S. Lee, P. K. Moriarty, L. A. Martinez, S. Leonardi, G. Vijayakumar, and J. G. Brasseur. A large-eddy simulatiion of wind-plant aerodynamics. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 9–12 Jan. 2012.
[Dav97]L. Davidson. Large-eddy simulations: a note on the derivation of the equations for the subgrid turbulent kintic energies. Technical Report, Chalmers University of Technology, Department of Thermo and Fluid Dynamics, 1997.
[Dom06]S. Domino. Towards verification of formal time accuracy for a family of approximate projection methods using the method of manufactured solutions. In Center for Turbulence Research Summer Proceedings. 2006.
[Dom08]S. Domino. A comparison of various equal-order interpolation methodologies using the method of manufactured solutions. In Center for Turbulence Research Summer Proceedings. 2008.
[Dom10]S. Domino. Towards verification of sliding mesh algorithms for complex applications using mms. In Center for Turbulence Research Summer Proceedings. 2010.
[Dom14]S. Domino. A comparison between low order and higher order low mach discretization approaches. In Center for Turbulence Research Summer Proceedings. 2014.
[DNP98]F. Ducors, F. Nicoud, and T. Poinsot. Wall-adapting local eddy-viscosity models for simulations in complex geometries. In International Conference on Computational Conference, volume 50. 1998.
[Dye74]A. J. Dyer. A review of flux-profile relationships. Boundary-Layer Meteorology, 7:363–372, 1974.
[EWS+10]H. Edwards, A. Williams, G. Sjaardema, D. Baur, and W. Cochran. Sierra toolkit computational mesh computational model. Technical Report SAND-20101192, Sandia National Laboratories, Albuquerque, NM, 2010.
[HBH+03]M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, J. Thornquist, R. Tuminaro, J. Willenbring, and A. Williams. An overview of trilinos. Technical Report SAND-20032927, Sandia National Laboratories, Albuquerque, NM, 2003.
[Jas96]H. Jasek. Error analysis and estimation for the finite volume menthod with applications to fluid flow. In Ph.D. Thesis, Imperial College. 1996.
[KV93]Y. Kallinderis and P. Vijayan. Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes. AIAA Journal, 31(8):1440–1447, 1993.
[KB89]Y. G. Kallinderis and J. R. Baron. Adaptive methods for a new navier-stokes algorithm. AIAA Journal, 27(1):37–43, 1989.
[KP02]Joseph Katz and Allen Plotkin. Low Speed Aerodynamics. Cambridge University Press, second edition, 2002.
[Mar05]M. Martinez. Comparison of galerkin and control volume finite element for advection-diffusion problems. Int. J. Num. Meth. Fluids, 50(3):347–376, 2005.
[Mav00]D. J. Mavriplis. Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. International Journal for Numerical Methods in Fluids, 34(2):93–111, 2000.
[MKL03]F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the sst turbulence model. Turb, Heat and Mass Trans, 2003.
[Moe84]C.-H. Moeng. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41(13):2052–2062, 1984.
[Pao82]S. Paolucci. On the filtering of sound waves from the navier-stokes equations. Technical Report SAND-828257, Sandia National Laboratories, Livermore, CA, December 1982.
[RB78]R. G. Rehm and H. R. Baum. The equations of motion for thermally driven buoyant flows. Journal of Research of the National Bureau of Standards, 83:279, 1978.
[RM84]R. Rogallo and P. Moin. Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16:99–137, 1984.
[SR87]G. Schneider and M. Raw. Control volume finite element method for heat transfer and fluid flow using colocated variables - 1. computational procedure. Numerial Heat Transfer, 11(4):363–390, 1987.
[SHZ91]F. Shakib, T. J. R. Hughes, and J. Zdenek. A new finite element formulation for computational fluids dynamics: the compressible euler and navier stokes equations. Comp. Meth. in App. Mech and Engr., 89:141–219, 1991.
[SrensenS02]Jens Nørkær Sørensen and Wen Zhong Shen. Numerical modeling of wind turbine wakes. Journal of Fluids Engineering, 124(2):393–399, 05 2002. URL: http://dx.doi.org/10.1115/1.1471361.
[Tea16]SIERRA Thermal/Fluid Development Team. Sierra low mach module: fuego theory manual - version 4.42. Technical Report SAND2016-10163, Sandia National Laboratories, October 2016.
[TDB05]S. Tieszen, S. Domino, and A. Black. Validation of a simple turbulence model suitable for closure of temporally-filtered navier-stokes equations using a helium plume. Technical Report SAND-20053210, Sandia National Laboratories, Albuquerque, NM, June 2005.